

PILLAR FIRE HYDRANT type NH2

<Two in one = hydrant + isolating pre-valve>

<Double reliability = use even when main valve is defective> <high flow: $K_V = 265 \text{ m}^3/\text{h}>$ PROCUREMENT DATA*1 *Name: Above-ground fire hydrant *Made in accordance with the standard EN14384*2CE *Nominal sizes: DN100, PN16 *With isolation "pre-valve" *With control valve, Appearance *Possibility of use even when the main valve seal is broken; *Activation without additional tools, *With the blocking of unauthorized activation, or not *Flow Kv [m3/h]:(for Di=2x65) — min 260 *Activation moment MOT: max. 50Nm (Class 1) *Repair of the main valve: the other hydrants remain in operation, without 350 digging up the soil and without dismantling the hydrant body; F *With a defined point of breaking (4.1) due to force F, or not *Break (4.1): without pipeline damage, automatic stop of water discharge (with the condition "proper foundation")*3 *Moment of breakage: max 7800 Nm Flange EN1092-2 (DN100, PN16) (DN150, PN16) *Input connection: -Particular request, "describe" -(1350) (1550) (1850) mm *Nominal height Hi:-2% -Particular request, "describe" two-part light (2x65+1x100) mm *Outlet opening Di:-Drainage drain: Particular request, "describe" *Outlet couplings: Specify label and standard -With D1
-D2(particular request) Ø1000 type D1 -Without Technical *Drainage: manhole 10.3 *Medium:Water (concrete) → Drinking *Submit documents: -"Prospect", -"Test report", issued by the "authorized body", -Valid "Certificate of Conformity", issued by an "authorized body", *1-- "Omit/Add" as needed *2-- The standard determines min. performance, type D2 10.6 10.7 and recommends the better Appearance 1.Inlet flange 2. Isolation "pre-valve" Ø320[∑] 3. Obturator - "main valve" 4. Bodv 4.1 Place of breakage, due to force F 5. Cap 6.Blocking of unauthorized activation 10.3 7. Control valve (safety; sealing) 8. Outlet couplings 9. Identification plate ("CE", "K_v",) 10. **Drainage drain:** (not defined by the standard) 10.4 10.1 Drain valve 10.2 Drain pipe 10.3 Stone \longrightarrow (16÷31)mm 10.5 type **D2**: 10.1 Drainage valve 10.2 Drain pipe -►(L=?) mm 10.3 Distribution pipe 10.4 Wire basket 10.5 Stone — $(16\div31)$ mm*4 10.6 Cover 10.7 Plastic foil*4

Provided by the buyer

Srbija - 26000 PANČEVO, Savska 12 - 14. Tel. +381 13 346226 Tel./Fax +381 13 346042 www.tecoop.co.rs / tecoopeng@mts.rs

without 4.1 with, or without, 4.1

BR. 02.23/10.4.1

Load scheme

(4.1)

F=M/a

 $m_{\mathsf{A}=\mathsf{Fxb}}$

 $F_{\Delta}=F$

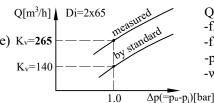
L 2/2

PILLAR FIRE HYDRANT type NH2

<Two in one = hydrant + isolating pre-valve> <Double reliability = use even when main valve is defective> <high flow: $K_V = 265 \text{ m}^3\text{/h}>$

Basic technical characteristics:

- *Safe = complies with the requirements of the standard EN 14384 = (
- *Purpose: Taking water from underground pipelines for fire fighting and communal needs
- * See "Procurement Data" L1/2
- *Flow: $\overline{\text{Kv}} = 265 \text{m}^3/\text{h}$, for Di = 2x65
- *moment of activation Mot: max 45Nm, (Class 1)
- *moment of breakage (at point 4.1) due to force F..... M=7500 Nm
- *foundation
- *weight..... \sim (65÷76) daN for Hi (1350÷1850) mm
- *materials:
- -hydrant body..... nodular cast /stainless steel
- -cap, and output couplings..... aluminium
- -sealants.....polypropylene/elastomers
- -spindle, and obtutator seat..... stainless steel


Advantages:

- *Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:
- use of the hydrant and in case the main valve (3) is broken,
- that the other hydrants remain in operation even when the main valve seal is replaced
- automatic stop of water leakage, in case of breakage (4.1) due to force F,
- to omit a separate isolation valve in front of the hydrant,
- lower cost of construction and maintenance of the hydrant network.
- *High flow: $K_v = 265 \text{ m}^3/\text{h}$, for Di = 2x65
- *Replacing the main valve seal (3): without digging up the ground and without disassembling the body, (4)
- *The threaded part of the obturator is: outside the flow of water, permanently lubricated, maintenance-free during its entire working life,
- *Prevented damage to the supply pipeline = breakage at point 4.1, due to force F,
- *Activation without additional tools, by turning the cap (5) on top of the hydrant,
- *Possibility of blocking (6) unauthorized activation
- *The main valve seal is conical, self-flushing = dirt retention prevented = longer service life of the seal,
- *Easy activation: class 1, MOT < 45 Nm (max allowed 130 Nm, class 3),
- *High closing reliability: sealing of the closure even after 1000 closures.
- *High reliability of the drainage system = two outlet openings, and self-flushing drainage valve
- *Great strength of the obturator and the body of the hydrant, MsT> 250 Nm
- *The possibility (7) of easy control of the correctness of closing and draining the hydrant,
- *The amount of residual water in the hydrant body, < 80 cm³ (max. allowed 150 cm³),
- *Fast drainage $\leq 5 \min (\max. \text{ allowed } 10 \min/\text{m}),$
- *Easy replacement of the seat, main valve (3) and pre-valve (2)
- *Repair of the drainage valve (10.1), outside, partial excavation, and without dismantling the hydrant body.(4)

Documents with the delivery of hydrant:

*Declaration of Performance

*Instruction for safety work (installation, handling, inspection, maintenance, guarantee) K_v=265

$$\begin{split} Q &= K_v \; x \; (1000 \Delta p \; / \; \rho) \frac{1}{2} \\ - flow & \qquad \qquad Q \; [m^3/h] \\ - flow \; ratio & \qquad \qquad K_v \; [m^3/h] \\ - pressure \; difference & \qquad \Delta p \; [bar] \\ - water \; density & \qquad \qquad \rho \; [kg/m^3] \end{split}$$

Srbija - 26000 PANČEVO, Savska 12 - 14. Tel. +381 13 346226 Tel./Fax +381 13 346042 www.tecoop.co.rs / tecoopeng@mts.rs

Flow of hydrant: